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Supplemental Material

Seismic networksworldwide are designed tomonitor seismic groundmotion. This process
includes identifying seismic events in the signals, picking and associating seismic phases,
determining the event’s location, and calculating its magnitude. Although machine-learn-
ing (ML) methods have shown significant improvements in some of these steps individu-
ally, there are other stages in which traditional non-ML algorithms outperform ML
approaches. We introduce SeisMonitor, a Python open-source package to monitor seismic
activity that uses ready-made ML methods for event detection, phase picking and asso-
ciation, and otherwell-knownmethods for the rest of the steps.We apply these steps in a
totally automated process for almost 7 yr (2016–2022) in three seismic networks located in
Colombian territory, the Colombian seismic network and two local and temporary
networks in northern South America: the Middle Magdalena Valley and the Caribbean-
Mérida Andes seismic arrays. The results demonstrate the reliability of this method in
creating automated seismic catalogs, showcasing earthquake detection capabilities
and location accuracy similar to standard catalogs. Furthermore, it effectively identifies
significant tectonic structures and emphasizes local crustal faults. In addition, it has
the potential to enhance earthquake processing efficiency and serve as a valuable supple-
ment tomanual catalogs, given its ability at detectingminor earthquakes and aftershocks.

Introduction
The expansion of seismological networks, persistent monitor-
ing efforts, and the establishment of local or temporary
networks for specific investigations have contributed to a sig-
nificant augmentation in the quantity of seismological data
(Ringler et al., 2019). This has also led to an increase in the
number of identified earthquakes, unveiling seismic activity
that had previously gone unnoticed.

Because of the volume of data, there is a need to develop
computational tools capable of processing it. These tools have
been studied, even before the recent increase in the use of
machine-learning (ML) algorithms, and address the different
steps of the earthquake monitoring workflow, which mainly
includes event detection (Allen, 1978; Gibbons and Ringdal,
2006), phase picking (Allen, 1978; Sleeman and van Eck, 1999;
Saragiotis et al., 2002; Ross and Ben-Zion, 2014), phase asso-
ciation (McBrearty, Gomberg, et al., 2019; Yeck et al., 2019;
Sheen and Friberg, 2021), earthquake location (Lahr, 1999;
Lomax et al., 2000; Klein, 2002; Pavlis et al., 2004), and mag-
nitude estimation (Rengifo and Carriazo, 2004; Lopez et al.,
2020).

Event detection and phase picking can be particularly time-
consuming tasks. This is due to the need to process continuous
data from multiple stations to identify earthquake signals
and record the arrival times for both P and S waves. This process

must contend with nonstationary background noise, which
can originate from various sources, including instrumentation,
ambient factors, and human-generated disturbances.
Furthermore, it is crucial to consider various factors that can
result in different types of earthquake signals. These factors
may include the source’s distance from the recording station,
the signal-to-noise ratio, and the occurrence of multiple earth-
quake signals in close temporal proximity, often stemming from
a sequence of aftershocks. Each of these examples can manifest
at any station in the seismological network, presenting a formi-
dable challenge in seismology. Existing non-ML picking algo-
rithms have often fallen short in achieving results comparable
to manual methods. Moreover, configuring these algorithms
can be laborious and time-intensive, requiring the definition
of parameters such as filters and thresholds for each station.
As a result, it is crucial to explore novel approaches that enable
the training of algorithms to generalize detections across various
signal types.
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Recently, because seismology is a data-rich science, several
recent results show that ML algorithms have the potential to
carry on some of the steps in the earthquake monitoring work-
flow (Woollam et al., 2022). Deep learning, a subset of ML
known for its ability to learn complex relationships within vast
data sets through layered neurons and nonlinear transforma-
tions (deep neural networks), has significantly influenced seis-
mological tasks (Mousavi and Beroza, 2022). These algorithms
can be implemented using supervised learning or unsupervised
learning. In supervised learning, algorithms learn from labeled
data to make predictions on new, unlabeled data sets. On the
other hand, unsupervised learning algorithms classify data by
identifying hidden patterns without the need for labeled data.
As a result of the large, quality-controlled, and labeled data sets
in seismology (Mousavi, Sheng, et al., 2019; Yeck et al., 2019;
Magrini et al., 2020), supervised learning has succeeded in gen-
erating seismic catalogs with unprecedented detail. Unlike
supervised learning, which depends on labeled data sets created
by humans, unsupervised learning is not biased by predeter-
mined labels. Consequently, it has the potential to reveal pat-
terns that are not normally easily identified by supervised
methods. This characteristic establishes unsupervised learning
as a promising approach to complete the higher expression of
seismicity (Beroza et al., 2021). Both supervised and unsuper-
vised learning have been used in the state-of-the-art ML mod-
els in the earthquake monitoring workflow.

Because of the extensive archives of seismic data and the
availability of handpicked labels from earthquake catalogs,
event detection and phase picking can be considered super-
vised learning tasks (Ross et al., 2018; Dokht et al., 2019;
Pardo et al., 2019; Woollam et al., 2019; Mousavi and Beroza,
2022; Saad et al., 2023). These tasks can be approached either
independently or simultaneously (Mousavi, Zhu, et al., 2019;
Zhu and Beroza, 2019; Mousavi et al., 2020). In addition, much
more robust and accurate data sets have emerged over time
(Mousavi, Sheng, et al., 2019), and more than one million
labeled signals recorded around the world have been used
to train state-of-the-art algorithms (Mousavi et al., 2020).

After identifying seismic phases across various stations, the
next step involves their association. This process entails linking
phase arrival times observed at multiple stations to each shared
source that generated these phases. Although the phase-picking
step has been significantly improved using ML methods, phase
association has not received the same attention. This task pri-
marily relies on grid-search and back-projection algorithms
(Helmholtz Centre Potsdam GFZ German Research Centre
for Geosciences and gempa GmbH, 2018; McBrearty, Gomberg,
et al., 2019; Yeck et al., 2019; Sheen and Friberg, 2021). Despite
these algorithms being robust and effective, they have demon-
strated limitations when associating phases that are close in time
and come from different sources or by ignoring false phases
poorly picked by the automatic picking algorithms. Therefore,
other approaches are emerging using random sample consensus

(Woollam et al., 2019), Bayesian Gaussian mixture models
(BGMMs; Zhu et al., 2022), and supervised deep-learning
algorithms (Dickey et al., 2019; McBrearty, Delorey, et al.,
2019; Ross et al., 2019; McBrearty and Beroza, 2023).

In this study, we present an automatic seismic monitoring
workflow using some of the state-of-the-art ML approaches for
the three first main steps of the earthquake monitoring work-
flow. For event detection and phase picking, we use the two
original pretrained deep-learning models: PhaseNet (Zhu
and Beroza, 2019) and EQTransformer (Mousavi et al., 2020).
Both models use the three-component seismic waveforms as
input, but they differ in neural network architecture, output
results, and the number of training samples.

PhaseNet employs several stacked convolutional layers in
an adapted version of the U-Net architecture (Ronneberger
et al., 2015) to generate Gaussian probability distributions
of P and S arrivals. A pick value of 1 indicates arrival detection,
whereas 0 signifies noise. The original model was trained with
approximately six hundred thousand labeled samples from the
Northern California Earthquake Data Center Catalog. In con-
trast, EQTransformer incorporates several convolutional,
recurrent, and residual stacked layers. It features a hierarchical
attention mechanism (Vaswani et al., 2017), comprising a deep
encoder directing attention to the earthquake signal and three
separate decoders generating triangular probability distribu-
tions to predict the earthquake signal’s detection and the P
and S phases. EQTransformer was trained with the STanford
Earthquake Data set (Mousavi, Sheng, et al., 2019), a large-
scale global data set of labeled earthquake and nonearthquake
signals. In addition, data augmentation, an artificial technique
used to create new data from the existing data, was employed
during training to enhance the model’s performance.

Although both deep-learning models were developed using
different neural network approaches and training data sets,
they demonstrated outstanding performance in generalizing
the task of picking seismic phases across diverse sources
and regions not included in their training data (Park et al.,
2020; Jiang et al., 2021; Chin et al., 2022; Gong and Fan, 2022;
Münchmeyer et al., 2022; Miller et al., 2023). This suggests that
these models are applicable to various environments, regard-
less of geological context or source phenomena. We applied
both models for event detection and phase picking in seismic
waveforms recorded and generated by various stations and
sources within the Colombian territory. Because these models
were already pretrained, they were run in a prediction mode
with an efficient and lightweight processing. Upon comparing
the results obtained from both models using a subset of the
data from the CM network, we preferred EQTransformer to
detect and pick seismic phases simultaneously at each station.

For phase association, we use Gaussian mixture model asso-
ciator (GaMMA; Zhu et al., 2022), an unsupervised ML algo-
rithm that uses a BGMM for earthquake phase association,
determining preliminary earthquake locations while optimizing
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the maximum-likelihood criterion. It has shown positive results
with automatic phase-picking algorithms; due to its unsuper-
vised nature, it does not require any training and works for
any station geometry. Although GaMMA can generate prelimi-
nary earthquake locations, these locations are not robust.
Therefore, we use the NonLinLoc (NLLoc) algorithm (Lomax
et al., 2000) to obtain more reliable hypocentral locations.
Finally, we estimate the local magnitude of each localized event.

This implementation was done to get an automatic catalog for
almost 7 yr of data (January 2016–September 2022) in seismic
networks located in northern South America. The Colombian
national seismic network (period analyzed: January 2017–
September 2022) and two temporary local networks in northern
South America: the Middle Magdalena Valley (VMM, abbrevia-
tion in Spanish) and the CARibbean-Mérida Andes (CARMA)
seismic arrays (period analyzed for VMM: January 2016–
September 2022; period analyzed for CARMA: January 2016–
January 2018). The result is an automatic catalog with good qual-
ity in terms of the event location errors, produced in much less
time than it could have taken to do it manually, and which
defines the major tectonic structures and illuminates some
crustal faults in northern South America.

Data and Methods
We downloaded all publicly available seismological data and
metadata from January 2016 to September 2022 of three-com-
ponent multichannel stations of the three seismic networks
shown in Figure 1. The Colombian seismic network (CM) is
operated by Servicio Geológico Colombiano (1993) (SGC), the
Colombian Geological Service. It has a regional geometry that
seeks to cover all the national seismic activity, mainly located in
the Andean zone and on the Pacific and Caribbean coasts. Using
the International Federation of Digital Seismograph Networks
Web Services (FDSNWS), CM network only has available data
since 2017, then the period analyzed for CM network was
January 2017–September 2022. VMM array is a local portable
seismic network, also operated by the SGC, and was installed in
2014 in the VMM due to the interest to develop a seismic base-
line catalog due to shale gas and unconventional oil exploration.
Although there was only FDSNWS data available from 2017, for
this local network we requested an additional year of data from
the SGC. Then, the period analyzed for VMM network was
January 2016–September 2022. And finally, CARMA array is
an experimental local temporary network installed for two years
(2016–2018) and designed to explore the dynamics of flat slab
subduction and plate-edge tectonics in northern South America
(Levander, 2016). The period analyzed for CARMA network
was January 2016–January 2018.

This combined dataset was used as input for our automatic
monitoring workflow. For event detection and phase picking, we
tested the performance of the original pretrained PhaseNet and
EQTransformer deep-learning models on 1 yr and 1 month
(December 2019–January 2021) of data of the CM network.

This period was considered to cover several types of seismic
sources, such as cultural and instrumental noise, explosions, sev-
eral earthquakes with different hypocentral locations and mag-
nitude values, including Bucaramanga nest events at a depth of
150 km, induced seismic events, and a set of aftershocks.

PhaseNet and EQTransformer were configured with default
processing window settings. PhaseNet used a processing window
of 3000 samples with a 50% overlap, whereas EQTransformer
used a processing window of 6000 samples with a 30% overlap.
Regarding the P- and S-phase picking probability thresholds,
PhaseNet was set to 0.3, whereas EQTransformer was set to
0.01, considering that its event detection threshold was set to 0.3.

Based on the results obtained, EQTransformer was identi-
fied as the preferred method to detect and pick seismic phases
simultaneously at each station during the entire period of the
present study (January 2016–September 2022). The automatic
catalog of picks was associated with GaMMA, an unsupervised
deep-learning algorithm that is fast and easy to implement and
the output of which also provides a preliminary location and
event origin time. GaMMA was executed using BGMM, con-
sidering 4 P and 2 S phases as minimum for the associated
earthquakes, 2 s for maximum phase residual, 7 km/s for P
velocity to be able to consider deep events, 1.75 for VP=VS ratio,
and no amplitude information. GaMMA allows the use of the
Density-based spatial clustering of applications with noise
(DBSCAN) algorithm (Schubert et al., 2017) to improve initial-
ization strategies by dividing picks into sub-windows for asso-
ciation. This approach enhances computational efficiency and
increases association performance. In this work, we defined the
following DBSCAN hyperparameters: 20 s for epsilon and 4 for
the minimum number of samples, which correspond to the
maximum time between two picks for one to be considered a
neighbor of the other and the number of samples in a neighbor-
hood for a point to be considered a core point.

Although preliminary GaMMA locations are good enough to
allow us to visualize the main seismic activity, we use NLLoc to
further improve earthquake locations (Lomax et al., 2000) by
interpolating a 1D velocity model to 3D, as defined by Ojeda
and Havskov (2001) for Colombia. In this case, the simplicity
of the velocity model was chosen to preserve as many events
as possible for earthquake location. Although using more robust
velocity models, such as the 3D anisotropy velocity model
(Poveda et al., 2018), could be interesting, it might not be ideal
for associations that have not been manually checked. This
approach could decrease the number of localized earthquakes
by not converging to the earthquake location required by robust
velocity models. We employed NLLoc with the Gaussian analytic
location method, which employs the nonlinear probabilistic
inversion approach (Tarantola and Valette, 1982), along with
the oct-tree sampling algorithm. This algorithm uses a recursive
8-cell subdivision to find the maximum-likelihood point in 3D
space based on the selection of the cell with the lower misfit
between the observed arrival times and theoretical travel times.
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This approach provides an accurate, efficient, and complete
mapping of the earthquake location. NLLoc programwas applied
exhaustively until several quality parameters were met; otherwise,
the event was removed. The exhaustive process consisted of
gradually eliminating picks from distant stations until the quality
parameters were met. The quality parameters are the following:
epicentral errors less than 0.15°, depth errors less than 10 km, no
negative depths, and root mean square less than 2.5 s.

Finally, we estimated the local magnitudeML for each event
calculated using the following equation, which is not consid-
ering the station-correction function but is considering the
maximum amplitude A in mm on the two horizontal compo-
nents simulating a Wood–Anderson seismograph, a distance-
correction function in terms of the geometrical spreading, and
the anelastic attenuation of the medium:

ML � logA� a × log�r=rref � � b × log�r − rref � � K�rref �:
�1�

Figure 1. Permanent seismic network: the Colombian seismic
network with red triangles. Temporary seismic networks: (1)
the Middle Magdalena seismic array with yellow triangles and (2)
the CARibbean-Mérida Andes seismic array with magenta tri-
angles. Isolated stations: 1. MAP in Malpelo Island. 2. PRV,
RNCC, SAIC, and SERC in the San Andres Archipielago. Other
highlighted stations are referenced in the analysis. Mainshocks:
25 November 2018 Mw 6.0 Providencia, 24 December 2019
Mw 6.0 Mesetas, and 22 March 2021Mw 5.1 Puerto Gaitán. CC,
central Cordillera; EC, eastern Cordillera; MC, Cordillera de
Mérida; WC, western Cordillera. The color version of this figure is
available only in the electronic edition.
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We used the traditional calibration parameters for the dis-
tance-correction function in the Colombian territory (Rengifo
and Carriazo, 2004), with a = 1.019 related to the geometrical
spreading, b = 0.0016 related to the anelastic attenuation
factor, rref � 140 km is the reference distance that establishes
a common point with the traditional Richter scale in
California, and K�rref � is the base level or the reference mag-
nitude whenML 3. These values serve as a general and approxi-
mate means to estimate the local magnitude for the entire
Colombian territory, which we find ideal for simplifying the
magnitude estimation process. This approach proves effective
enough to produceML values comparable to those reported by
the SGC, which specifies magnitudes by zones (Lopez et al.,
2020). We avoid this level of detail because it would require
more analysis in our workflow, including consideration of
mapped lithologies and updated attenuation values.

Results and Discussion
Event detection and phase picking
We conducted a comparative analysis between PhaseNet,
EQTransformer, and manual picks reported by SGC. The SGC
picks database corresponds to different classifications of events:
local and international earthquakes, as well as non-locatable
earthquakes and explosions. All manual picks of these events
were used in this analysis. Our analysis focuses on a subset
of data spanning approximately one year, encompassing various
signal types originating from diverse sources, including both
noise and earthquake events. Figure 2 illustrates pick results
using records from a set of aftershocks in Mesetas, Colombia,
and a signal affected by electronic issues. Regarding event detec-
tion, both PhaseNet and EQTransformer outperform SGC.
PhaseNet exhibits the ability to pick numerous phases and detect
very small events, but it also generates numerous false picks in
stations with instrumental issues. In contrast, EQTransformer
demonstrates slightly lower recall than PhaseNet but offers
higher accuracy, resulting in a reduced number of false positives
and assigning low probabilities to potential mistakes.

In general, we found that PhaseNet has difficulty in evading
some spike noise signals that can happen very often in the seis-
mic record due to different types of noise that influence the
stations, such as cultural noise or noise due to equipment
malfunction.

Figure 3 depicts that the number of picks obtained by
PhaseNet is consistently higher for all stations compared to
the manual catalog. In contrast, EQTransformer shows a sim-
ilar number of picks to the manual catalog for several stations.
EQTransformer tends to pick a higher number of phases than
the manual method, particularly for stations that are isolated or
distant from each other.

This observation aligns with the typical manual processing
approach, in which analysts tend to allocate more attention to
stations in close proximity to each other. This strategy is moti-
vated by the expectation of obtaining a sufficient number of

picks for an accurate event location. In contrast, isolated sta-
tions may receive comparatively less attention from analysts.

For example, stations PRV, RNCC, SAIC, and SERC that
are located in the San Andres Archipielago, or station MAP
in Malpelo Island, a small oceanic island in the Pacific
Ocean, are some of the most isolated stations (a few nearby
stations are shown in Fig. 3). If the picks of the automatic algo-
rithms are, in fact, real P and S phases, it would mean the
manual catalog in these cases is incomplete.

Is the manual catalog incomplete? As an example, we plot-
ted several traces around the picks from the EQTransformer
arrivals (Fig. S1, available in the supplemental material to this
article) and can visually confirm that many of these picks are
valid and true detections. This suggests that the significant
increase in detections, especially in isolated stations, can be
true. They are likely not useful for locating the earthquakes
but shows that the algorithms have in fact the potential to com-
plement the manual catalog for individual stations.

There are also a few specific nonisolated stations, like sta-
tion AGCC, which has more than 30 stations within a 200 km
radius. For these stations, both models pick a higher number of
phases. Given the trend of good performance for nonisolated
stations, we consider that the station was not completely man-
ually picked.

Verifying the veracity of the picks databases is challenging
because there is no certainty about which one constitutes the
complete database. Initially, it may seem reasonable to assume
that the SGC’s picks database is complete, given that SGC ana-
lysts review all raw seismic signals rather than relying solely on
automatic algorithms. However, ML picking models have been
shown to increase the number of manual picks (Zhu and
Beroza, 2019; Mousavi et al., 2020). Therefore, we constructed
a confusion matrix with the following logic: Iteratively, we
assumed one true picks database and analyzed the veracity
of the other picks databases (test databases) in relation to it,
searching for pick correspondences. Correspondence occurs
if the time difference between them is less than 1.5 s, sufficient
time to capture P and S phases with reliable probabilities, with
the S phase being the most vulnerable to time discrepancies as
probability decreases (Fig. S2). Although a 1 s time difference
might suffice to capture most phases with higher probabilities,
we chose to extend it by an additional 0.5 s to encompass more
S phases in our analysis.

Figure 4 shows the confusion matrix for the SGC’s manual
picks database and EQTransformer’s and PhaseNet’s picks data-
bases with the initial probability thresholds specified in the Data
and Methods section, as well as for probability thresholds
greater than 0.5 and 0.7 to assess model performance when
restricting probability. Overall, PhaseNet with its respective
probability thresholds demonstrates that it can achieve a high
percentage of picks from both the SGC and EQTransformer
databases (Fig. 4, upper-left confusion matrix for both phases).
However, it is also evident that SGC and EQTransformer
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capture very few picks from PhaseNet’s total picks (Fig. 4, bot-
tom-right confusion matrix for both phases). In other words, as
mentioned throughout the discussion, PhaseNet manages to
obtain a considerable number of picks that EQTransformer
and SGC can identify, but even for picks with probability
≥0.7, its number of picks surpasses what EQTransformer and
SGC can obtain.

On the other hand, EQTransformer demonstrates its ability to
capture 43% of P picks from the SGC, which is 20% less than
what PhaseNet can achieve (63%). However, SGC can obtain
20% of EQTransformer’s total number of P picks, which increases
to 34% if we restrict P-phase probabilities to 0.5 or 0.7. Yet, in
these two cases, EQTransformer’s ability to detect manual picks
decreases significantly (22% and 13%, respectively). Therefore, we
prefer to keep the initial EQTransformer probability thresholds,
relying on 20% of its picks. In contrast, when considering
PhaseNet, we would only have confidence in 2% of its data.

Based on this analysis, we consider that EQTransformer,
with the initial probability thresholds, represents the best

scenario in our testing. It manages to capture 43% of the
manual data, and we can trust at least 20% of its picks (indi-
cated by rectangles with red borders in Fig. 4). Some of the
remaining 80% of picks from EQTransformer are likely true
picks that are not recorded in the SGC’s database, as men-
tioned for picks from isolated stations. For S picks, the analysis

Figure 2. Examples of phase-picking results. Upper panel shows
20 min of a set of aftershocks 1.28 hr after the mainshock in
Mesetas (Mw 6.0) at 24 December 2019 19:03:52 UTC recorded
by URMC station, the closest station of the epicenter at that time
(32 km). Lower panel shows one day of data in a station with
technical issues in the digitizer. Vertical lines in color represent the
arrival timestamp picked by EQTransformer, PhaseNet, and
manual analysts of the Servicio Geológico Colombiano (SGC).
Cold and warm colors represent P and S picks, respectively, and
the more intense the color, the higher the probability of the pick.
The color version of this figure is available only in the electronic
edition.
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Figure 3. Comparison by station of the number of picks between
automatic and manual pickers in one year of data (approximately
December 2019–January 2021). The circles and crosses represent
the P and S phases, respectively. The color bar represents the

number of stations the station has within a 200 km radius, and
the size is proportional to the distance between the station and
its closest station. The color version of this figure is available only
in the electronic edition.

Figure 4. Confusion matrix for both P and S picks databases for 1
yr and 1 month (December 2019–January 2021). PNET and EQT
are using the initial probability thresholds defined in the Data and
Methods section. Other thresholds are also shown to review the
model’s performance when the probability is restricted.

Rectangles with black borders represent the model’s perfor-
mance compared with the SGC database picks. Rectangles with
red borders indicate the best scenario to verify the veracity of the
picks. The color version of this figure is available only in the
electronic edition.
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is quite similar to that presented for the P picks. Finally, we
strongly believe that these results can be notably improved
if both models are retrained or fine-tuned with Colombian
data, as shown by previous research in other regions (Chai
et al., 2020; Lapins et al., 2021; Ni et al., 2023; Zhu et al.,
2023; Niksejel and Zhang, 2024).

In conclusion, the number of picks detected by
EQTransformer has a scale similar to that reported by the
SGC, whereas PhaseNet causes an overflow. Furthermore,
although PhaseNet detects a larger number of arrival times, thus
potentially detecting smaller earthquakes, EQTransformer
inspires higher confidence in identifying authentic P and S
phases. Based on these comparisons, we will use from here for-
ward EQTransformer as the automatic phase picker to produce
our earthquake catalog in this study between January 2016 and
September 2022.

Phase association
GaMMA stands out from traditional association algorithms
because it does not rely on standard procedures like grid search
or supervised training. It effectively associates phases from

various sources at different
epicenter distances. Figure 5
illustrates its effectiveness in
associating phases during the
earthquakes that occurred on
24 December 2019, across dif-
ferent locations in the country.
Furthermore, GaMMA dem-
onstrates its capability in han-
dling a series of aftershocks
following the Mesetas main-
shock of Mw 6.0. It not only
successfully associates phases
that occur close in time and
space but also provides
approximate yet reasonably
accurate locations for these
events. For example, Figure 5
indicates that the aftershocks
are located a few kilometers
away from the coordinates lat-
itude: 3.45° and longitude:
−74.19°, which fall within the
Mesetas municipality where
the mainshock occurred.
Therefore, GaMMA’s associa-
tion approach offers prelimi-
nary insights into the seismic
activity of the region.

Given that the seismic net-
work used in this study is
pretty disperse, with a signifi-

cant station separation, many picks were discarded during
the association step (a bottleneck that we wish to address in
future work). Figure 6 shows the number of picks associated
throughout the entire study period, based on the picks’ prob-
ability levels. The associated picks for both the P and S phases
were less than 30%. The percentage of P-phase association
increases as the pick probability increases, whereas for the S
phase, the maximum probability does not correlate with the
larger number of associations. Therefore, even S picks with
high probabilities, which likely correspond to true picks, are
not all associated with an event and are discarded.

There are several reasons why the association algorithm
could not associate a large number of picks. First, there are
not enough picks to locate the event, so the algorithm does
not converge to a reliable solution. Second, there are some false
picks taken as true picks, introducing noise to the data. Third,
there are several picks close in time and space, which makes the
task considerably more difficult. And finally, there are several
true picks from stations at greater distances, so the theoretical
travel time of the event to the station could be computed in a
wrong way, considering the simple velocity model used in this

Figure 5. GaMMA phase association on 24 December 2019. Stars within circles represent events
based on their origin time and distance from the epicenter to the coordinates: latitude 3.45° and
longitude −74.19°, situated in the Municipality of Mesetas. Colored circles depict associated
phases corresponding to their respective sources, whereas circles without color indicate unas-
sociated phases. Around 19:00, there are associations related to the series of aftershocks following
the main earthquake in Mesetas Mw 6.0 The color version of this figure is available only in the
electronic edition.
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case. It implies the GaMMA loss function would be higher than
expected, and then it could not optimize the earthquake param-
eters at the M-step properly for the Gaussian mixture model.

GaMMA provides a preliminary hypocentral location that
generally illuminates the seismic activity in northern South
America, as shown in Figure 7a. The seismic activity provides
insight into the significant subduction mechanisms resulting
from the relative convergence among the Nazca, Caribbean,
and South American plates. There is also shallow seismicity
along the Andes mountain chain and some earthquake main-
shocks with their respective aftershocks, such as the 25
November 2018 Mw 6.0, Providencia, Colombia (Bishop et al.,
2022), and the 24 December 2019 Mw 6.0, Mesetas (Mayorga
et al., 2021), Colombia. December 2019 was the month with
the highest number of earthquakes due to a big series of after-
shocks in Mesetas, followed by other aftershocks in March
2021 induced by massive wastewater injection near Puerto
Gaitán, Colombia (Molina et al., 2020; to observe 1 day of
recorded aftershocks at the station closest to the event, see
Figs. S3 and S4).

Seismicity is expected to increase over time due to the grow-
ing number of stations and available data, as illustrated in the
early months of 2016, when the CARMA network was included
in the analysis between 2016 and 2018 (Fig. 7b,c). During this
period, the catalog recorded the highest number of earth-
quakes, particularly those with magnitudes between ML 1
and 2. From January 2018 to September 2022, the number
of stations varied between 35 and 50, averaging 45 stations.
Despite the relatively constant number of stations since

2018, seismic activity seems to have decreased mainly from
March to December 2020. During this period, the available sta-
tions reached their lowest value, suggesting a notable impact
on the association step, particularly for non-dense networks
in which some stations are crucial for the association process.

Although GaMMA demonstrates proficiency in illuminat-
ing both shallow and deeper seismicity and excels in associat-
ing picks within sets of aftershocks, it is essential to underscore
the critical role of the association step in the seismic monitor-
ing process. The substantial information loss at this stage rep-
resents a bottleneck in advancing earthquake detection and
location accuracy. Developing algorithms capable of harness-
ing the wealth of phase picks provided by neural network algo-
rithms in regional networks would constitute a significant leap
forward.

Automatic seismic catalog
GaMMA seismic catalog was relocated using NLLoc, removing
events with large uncertainties. Figure 8 shows the seismic
catalog after removing events with few arrivals or large uncer-
tainties, leading to a catalog with only half of the earthquakes
of the GaMMA preliminary locations. Most of the seismicity in
Providencia was removed using this procedure because those

Figure 6. Number of phases and association percentage as a
function of EQTransformer probabilities for the entire study
period (January 2016–September 2022). The color version of this
figure is available only in the electronic edition.
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events had high uncertainty due to the low number of stations
and the poor azimuthal coverage of the network in that region,
or because the velocity model used was not the best to converge
the location of the events. Nevertheless, the rest of the seismic-
ity is robust, both in epicentral location and depth.

The primary shallow seismic activity in Colombia is pre-
dominantly situated in a north-northeastern direction along the
eastern Cordillera frontal fault system. Illustrated in Figure 9a,
this system is positioned at the boundary between the eastern
Cordillera and the South American shield. It encompasses
the Santa Marta-Bucaramanga fault system trending north-
northwest, one of the three strike-dip faults that compose the
triangular Maracaibo block (Fuenzalida et al., 1998; Londoño
et al., 2019). The other two are the Oca fault with an east–west
azimuth and the Boconó fault (running parallel to the Cordillera
de Mérida) with a northeast azimuth. In addition, it encom-
passes the Romeral fault system, stretching along the Cauca-
Patía Valley and between the central and western Cordillera.
Furthermore, there are identifiable seismicity clusters: two asso-
ciated with a series of aftershocks in Mesetas and Puerto Gaitán,
and other clusters linked to detonations in mining areas. Profile
A–A′ displays three shallow alignments with depths shallower
than 30 km (Fig. 10). The first corresponds to the Romeral fault
system, whereas the second and third alignments exhibit a
higher frequency of earthquakes due to their association with
the Mesetas and Puerto Gaitán aftershocks, respectively.
Some events are fixed at 5 km as an artificial artifact due to
the change in the layer of the velocity model.

In terms of the intermediate seismicity, Figure 9b shows a
lateral shift in intermediate-depth seismicity around 5.5°N

(Ojeda and Havskov, 2001). Correspondingly, volcanic activity
halts at the same latitude around 5 million years ago (Wagner
et al., 2017; Kellogg et al., 2019), leading to diverse interpre-
tations of the subducted slab at depth. A recent viewpoint pos-
its this shift as a tear in the Nazca plate fostering two distinct
subduction styles (Vargas and Mann, 2013; Chiarabba et al.,
2016; Syracuse et al., 2016): a typical normal subduction creat-
ing a volcanic arc to the south and a flat subduction devoid of
volcanism to the north. Another perspective suggests the pres-
ence of two distinct and complex subduction processes: one
involving ocean–continent subduction to the south and the
other involving continent–continent subduction to the north
(Fuenzalida et al., 1998). Previous studies refer to the southern
slab as the Cauca segment and the northern slab as the
Bucaramanga segment. It is hypothesized that the latter, attrib-
uted primarily to the tectonic processes associated with the
Caribbean plate, might also be influenced by the stresses result-
ing from its interaction and overlap with the Nazca plate
(Taboada et al., 2000; Kellogg et al., 2019; Sun et al., 2022).
These segments are clearly delineated in profile B–B′ (Fig. 10).
The Bucaramanga segment exhibits deeper events and offers a
clearer view of the subducting slab. This profile also highlights
an intermediate seismic cluster occurring between depths of 140

Figure 7. GaMMA seismic catalog. (a) Plan view of the seismicity.
(b) Histogram of events by month. (c) Magnitudes as a function
of time. (d) The number of stations used for processing as a
function of time. The color version of this figure is available only
in the electronic edition.

10 Seismological Research Letters www.srl-online.org • Volume XX • Number XX • – 2024

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220240036/6438491/srl-2024036.1.pdf
by Univ Nacional de Colombia, gprieto 
on 21 May 2024



and 160 km within the Bucaramanga segment, located at coor-
dinates 5.31 N and 73.77 W, in proximity to the municipalities
of Ubaté and Cucunubá. As of now, there remains limited infor-
mation available regarding this specific seismic cluster.

Our catalog shows a deep east–west streak of seismicity across
the Bucaramanga nest, a region with a high rate of seismic activ-
ity within a limited volume (Prieto et al., 2012). However, this
streak is an artificial artifact generated during the first two years
of analysis (2016–2018) due to the influence of the CARMA net-
work geometry biasing this region. Nevertheless, the alteration in
strike and dip is evident at the latitude of the Bucaramanga
nest, dividing the Bucaramanga segment into two sections.
We approximate that the northern section of the segment
demonstrates a strike of approximately ∼N5°W, whereas the
southern part displays a strike of approximately ∼N27°E.
Profile C–C′ illustrates how the slab dip varies slightly with
depth at the Bucaramanga nest depth (Fig. 10), which assumes
an elliptical shape elongating in the down-slip direction, consis-
tent with previous observations (Zarifi et al., 2007). Our findings
indicate that this nest is positioned around 6.82 N and 73.10 W,
spanning a depth range of roughly 130–145 km. However, it
remains an open question regarding the underlying physics driv-
ing its behavior (Yarce et al., 2014; Kellogg et al., 2019).

The catalog also shows a north–south intermediate seismicity
band at the western edge of the C–C′ cross section, which has
been difficult to notice; however, it has been mentioned in pre-
vious studies (Sun et al., 2022; Martinez and Prieto, 2023). This
catalog includes enough analysis time to illuminate it, which could
be evidence of the Coiba microplate located in the northernmost
Nazca region, the lithosphere of which is young and may be too
warm to host intermediate-depth seismicity (Sun et al., 2022).

Finally, to the north of the Bucaramanga segment, the absence
of instrumentation has resulted in various interpretations regard-
ing the presence of the Caribbean subducting slab. These inter-
pretations have primarily relied on regional seismic tomography
models, local seismicity, or surface wave data (Vargas and Mann,
2013; Chiarabba et al., 2016; Syracuse et al., 2016). The deploy-
ment of the CARMA network in our catalog has illuminated
shallow and intermediate seismicity in this region, providing
valuable insights into the Caribbean subduction process and
complementing recent investigations (Cornthwaite et al., 2021;
Sun et al., 2022). Profile D–D′ illustrates the Benioff zone, sug-
gesting flat subduction in which the slab dip was estimated at 28°
between depths of 30 and 140 km (Fig. 10). This finding aligns
with previous discussions, indicating that the Caribbean slab typ-
ically subducts at a shallow angle, generally less than 30°, at shal-
low depths (Cornthwaite et al., 2021).

Conclusions
Considering the workflow for processing passive seismic data,
detection and picking seismic phases could represent the most
time-consuming task. In this study, we conducted an extensive
evaluation of the performance of two pretrained deep-learning
models: PhaseNet and EQTransformer. Both models exhibit
high adaptability and operational efficiency, capable of rapidly
processing vast data volumes without the need for sophisticated

Figure 8. NonLinLoc (NLLoc) seismic catalog. (a) Plan view of the
seismicity. (b) Histogram of events by month. (c) Magnitudes as a
function of time. The color version of this figure is available only
in the electronic edition.
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hardware. Moreover, they showcase remarkable proficiency in
seismic phase detection, producing results comparable to
manual picking and even more effective for small earthquakes
or aftershocks. Although PhaseNet excels at identifying minor
earthquakes, EQTransformer instills higher confidence in the
results.

In the phase association step, using the phases detected by
EQTransformer (preferred), we found GaMMA to be a highly
effective algorithm, easy to implement in any network, and good
enough to illuminate the shallow and deeper seismicity, besides
providing very good results to associate picks in a set of after-
shocks. However, a large number of true picks were removed for
different reasons. We consider the most important reasons it is
because there were not enough picks to associate with a single
event or because there were several true picks from stations far
away from the event, making GaMMA unable to optimize the
earthquake parameters in M-step properly. GaMMA catalog
was relocated using NLLoc, removing events with high uncer-
tainty, which illuminates crustal faults and deeper structures: the
main crustal fault systems parallel to the foothills of three
Colombian Cordilleras and the marked shift in the intermediate
seismicity. Through seismic profiles, we propose the location of
both clusters, Bucaramanga nest and Cucunubá cluster, together
with other tectonic structures or human-induced activities.

This catalog was produced quickly and was the result from
an automatic processing performed mainly by ML models. All

the steps carried out were condensed into SeisMonitor, a
repository made in Python, allowing its use for any other seis-
mological network. We recommend this workflow to obtain a
good seismicity view. For instance, our catalog stands out for
its precise event location data, demonstrating a high level of
quality that effectively highlights key tectonic features and seis-
micity trends in northern South America. A similar workflow
could potentially be applied to any of the multiple temporary,
local arrays that have been deployed around the world.

Data and Resources
The SeisMonitor package, scripts, and Jupyter Notebooks to reproduce
the examples are available on GitHub (https://github.com/ecastillot/
SeisMonitor). The Servicio Geológico Colombiano (SGC) and
CARibbean-Mérida Andes (CARMA) data are available at http://
sismo.sgc.gov.co:8080 and https://www.fdsn.org/networks/detail/
YU_2016/, respectively. SeisMonitor is developed based on the following
packages: ObsPy (Beyreuther et al., 2010) to download and manipulate
seismological data, PhaseNet (Zhu and Beroza, 2019) and

Figure 9. NLLoc seismic catalog illuminating crustal faults, clusters
of seismicity, and deeper tectonic structures. Dashed circles
represent clusters of seismicity, and dashed rectangles represent
seismic profiles at depth. (a) Plan view for depths ≤30 km. (b) Plan
view for depths ≥50 km. The color version of this figure is
available only in the electronic edition.
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EQTransformer (Mousavi et al., 2020) for phase picking, GaMMA (Zhu
et al., 2022) for seismic phase association, and NonLinLoc (Lomax et al.,
2000) for earthquake location. All websites were last accessed in October
2023. The supplemental material includes a figure that compares the
differences in arrival times between manual picks and machine-learning
(ML) picking algorithms. In addition, there are other figures that visually
represent traces from the MAP, URMC, and PTGC stations. These fig-
ures serve to elucidate the accuracy of recorded picks in isolated stations
and illustrate the aftershock sequences following the Mesetas and Puerto
Gaitán earthquakes.
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