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Abstract

A key aspect of improving disaster prevention and mitigation in sustainable smart cities
is to increase the sensory capabilities of existing communication infrastructure, provid-
ing reliable information for urban management in emergency situations. Distributed
acoustic sensing (DAS) is an advanced technology suitable for this application because
it has a wide range of applications, including urban environmental awareness, struc-
tural health monitoring, and disaster warning. In this study, the field test data are mea-
sured by a DAS array deployed along the edge of the Guye area in the city of Tangshan
in China, where the 1976 Tangshan earthquake occurred. We analyzed the vibrations
from natural and artificial acoustic sources across both the space and frequency
domains and revealed various characteristics of the sources. Subsequently, a deep
learning-based method was developed for multiple acoustic source detection and clas-
sification, including earthquake, vibrator vehicle, traffic flow, and industrial production.
The training dataset was created using this acquisition of DAS field data, which was
annotated using the label transfer method proposed in this article. Then, typical acous-
tic events are classified and extracted from DAS data in the space-frequency domain.
The proposed source identification scheme enables real-time monitoring of routine
urban activities with long-distance coverage and high accuracy, as well as detection
of abnormal events. In addition, we can use this method to expand the range of rec-
ognized classes or apply it to special datasets. Our study shows a great value in improv-
ing the ability of urban environmental perception and hazard information analysis. It
also holds potential for earthquake detection, site-effects studies, and anomaly detec-
tion in urban environments.
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Introduction to address these problems. By extensively utilizing pre-existing

Smart cities are a new trend in modern urban development,
aiming to utilize advanced technology and innovative solutions
to improve urban sustainability, efficiency, and quality of
human life (Giffinger et al., 2007). In this process, intelligent
sensing plays a crucial role (Hancke et al., 2013). Existing
research uses geophones (Li et al., 2021) and video streaming
(Fedorov et al., 2019) for traffic flow monitoring and fire detec-
tion (Talaat and ZainEldin, 2023). Rashidi et al. (2011) utilize
body motion sensors and hot/cold water usage sensors to track
human activities and evaluate their health performance. These
sensors are often deployed as a massive number of nodes,
requiring a large-scale installation on-site to achieve full urban
monitoring coverage. However, with the continuous expansion
of the urban scale, node-based sensing systems may face lim-
ited coverage and high maintenance cost. The distributed
acoustic sensing (DAS) technology provides a new approach
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telecommunication fiber optics in the city, it is possible to
monitor human activities and infrastructure health (Liu et al.,
2023). Compared to traditional node-based sensors, distrib-
uted fiber-optic systems have the advantages of wide coverage
area, low maintenance costs, and more timely response, which
enable the management to have a more timely and comprehen-
sive understanding of the city’s operational status.
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DAS technology utilizing phase-optical time-domain reflec-
tometry (O-OTDR) facilitates distributed measurement of the
strain rate over distances spanning several tens of kilometers
with a higher spatial resolution (Shatalin et al., 1998). A DAS
system typically consists of an interrogator unit and optical
fiber cables. The interrogator emits continuous short-pulse
laser signals (light) into the cables. The laser signal undergoes
reflection and scattering through the fiber material and then
returns to the interrogator. When the fiber experiences vibra-
tion or acoustic disturbances, it alters the light scattering proc-
ess in the optic fiber. By analyzing the scattered light returned
to the interrogator using Rayleigh backscattered theory physi-
cal quantities such as strain rate induced by vibrations can be
measured. DAS can achieve sampling rates ranging from less
than 0.001Hz-50 kHz.

The advantageous features of DAS technology facilitate
wide application in geological science, including geological
exploration, earthquake source studies, ocean wave observa-
tions and mining (Williams et al., 2019; Li et al., 2022). In addi-
tion, it also has numerous applications in urban settings, such
as structural health monitoring, critical infrastructure security,
and surveillance of urban anthropogenic activity (Zhan, 2019;
Lindsey and Martin, 2021; Chen et al, 2023; Cheng et al,
2023). The work of Kowarik et al. (2020) and Wang et al.
(2022) has shown that DAS systems can achieve conventional
traffic flow monitoring with good accuracy. Lindsey et al.
(2020) and Wang et al. (2021) analyzed the impact of the
COVID-19 pandemic on human activities using DAS data.
Cunningham et al. (2023) found DAS system records mine
activities and local and regional blasting events very well.

A key aspect of using such a data-rich technology is to be
able to automatically extract information because doing this
manually is not feasible. Various machine learning methods
have been used on the DAS data to extract the signature of
the acoustic source and its identification. Wang et al. (2020)
used XGBoost to recognize active source events. Chiang et al.
(2023) proposed a 1D CNN architecture for DAS signal classi-
fication and it performed well with good accuracy. Yuan et al.
(2024) achieved high spatial resolution vehicle identification
using a spatial deconvolution U-Net model. A seismic signal fea-
ture extraction model called PhaseNet-DAS was proposed based
on the phase association method of the U-Net and Gaussian
mixture model, which has the potential to use the DAS tech-
nique to enhance earthquake monitoring (Zhu et al., 2023).

These studies demonstrate that machine learning methods
are very efficient at processing massive DAS data and are effec-
tive in extracting acoustic source features. Most studies have
focused on extracting acoustic features from temporal or spec-
tral domains using single-channel data, whereas DAS data can
capture the spatial distribution of acoustic sources, revealing
the source propagation patterns across space and exhibiting
pronounced signal features. Classification in the space-fre-
quency domain is robust and computationally efficient.
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In this study, we transformed DAS data into space-fre-
quency spectrograms using the short-time Fourier transform
(STFT) and trained a YOLOvV8 model to achieve the real-time
detection and classification of acoustic events. To obtain the
training dataset, we proposed a label transfer method allowing
manual data annotation in the spatiotemporal domain, and the
annotated data were transformed into the space-frequency
domain for model training. We also conducted urban-scale
DAS field observation experiments, collecting rich DAS data
that encompassed human activities and natural events such
as traffic flows, factory production, and seismic disasters.
Subsequently, we analyzed the signal features of different event
types. These DAS data served as the foundation for training
our model. Compared to the similar detection methods, our
approach effectively utilizes the space—frequency pattern of sig-
nals, greatly facilitating detection efficiency. This study indi-
cates that DAS technology exhibits promising prospects for
both routine urban monitoring and anomaly detection. It ena-
bles the observation of tiny vibrations and the extraction of
time-space—frequency features in the urban environment,
which can be used for structural monitoring and disaster pre-
vention.

Data and Methods

Field data

We measured field test data using an optical fiber array
deployed in the Guye area in the city of Tangshan in China,
as shown in Figure 1a, which is 43 km away from the epicenter
of the M, 7.5 Tangshan earthquake that occurred in 1976. The
total length of the optical fiber is about 6.45 km and it traverses
the central urban area of Guye from west to east. The optical
fiber passes through residential zones, near industrial factories
and major urban roadways, and it is also near a railway line.
During the experiment, an earthquake occurred near this area.
Consequently, the acquired data contain a wide variety of
signals, including human activities and natural events. In this
experiment, the Silixa iDAS device was used as the interrogator
unit. The interrogator was placed at the western end of the
optical fiber, as shown in Figure la. We uesd a 10 m gauge
length and channel spacing of 4.08 m for DAS data acquisition.
The total measured range is ~6446 m, with 1580 channels. We
used Global Positioning System to determine the actual spatial
distribution of the fiber-optic cable. The spatial position of the
optical fiber, as well as the locations of several channels, are
shown in Figure la.

Figure 1b shows an example DAS record (about 22 hr) that
includes multiple signals corresponding to both human and
natural sources. We analyzed the collected DAS data and iden-
tified many interesting acoustic signal events. Hammering tests
were conducted along the optical fiber route with a vibrator
vehicle and provided a constant manual active source. The
occurrence of an earthquake is indicated with a red arrow
on 19 September at around 20:22 (UTC + 8). The DAS signal
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due to the earthquake is not obvious in Figure 1b because the
ground motions caused by the earthquake are much weaker
compared to those generated by the trains near the fibers.
However, when we zoom-in on the earthquake occurrence
time, the seismic waves become clearly visible, as shown in
Figure 2e. In addition, the signal due to the movement of a
vibrator vehicle is outlined with white lines, starting from
the afternoon of 19 September and continuing into the eve-
ning. To understand the features of the various acoustic events,
time-frequency spectrograms and space-frequency spectro-
grams of typical events were created separately. The results
of the analysis are presented in Figure 2 and are discussed
subsequently.

Train source

This is due to the action of moving harmonic forces on the steel
rails (Sheng et al., 2004). Figure 2a shows the data analysis of a
train source. The train signal exhibits clear periodicity due to
the similar excitation characteristics of multiple carriages. The
train source generates a wideband and wide-range acoustic

3114 Seismological Research Letters

Downloaded from http://pubs.geoscienceworld.org/ssal/srl/article-pdf/96/5/3112/7172549/srl-2024222.1.pdf
bv lniversitv of Washinaton aorieto

www.srl-online.org « Volume 96

Figure 1. (a) Layout of the fiber-optic cable (red line) in the Guye
Area, China. The bold yellow line represents the railway line. The
white dots mark the locations of some distributed acoustic
sensing (DAS) channels. The blue star indicates the industrial
factory with distinguishable signal features. The inset in the map
shows the relative location of the optic fiber (red line) and a DAS
detected earthquake (red star). (b) A section of the DAS data
records containing several typical acoustic signals. The red
marker indicates the occurrence of an earthquake, where the
location is marked with a red star in the inset map in panel (a),
and the white lines mark the signal of a vibrator vehicle. The
earthguake signal is not prominent in this figure because the
ground motions caused by the earthquake are much weaker
than those generated by the trains near the fibers. Detailed
earthquake waveforms can be seen in a zoom-in window near
the earthquake occurrence in Figure 2e. The color version of this
figure is available only in the electronic edition.

signal. When the train moves at a constant speed, the excited
frequency bands remain stable, resulting in horizontal lines in
the time—frequency spectrogram of a single channel. However,
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when the train speed changes, a frequency-shift effect occurs,
causing the previously horizontal lines to become sloped (e.g.,
the white line shown in Fig. 2a). Furthermore, the higher the
frequency, the greater the slope variation. Zhang et al. (2022)
use these features of multichannel signals to estimate the
train speed.

Car source

The car signal is characterized by a series of short-duration
(~20-30 s), high-energy signals. Its waveforms and spectro-
grams are displayed in Figure 2b. Although vehicles also gener-
ate wideband excitations, their primary frequency components
concentrate around 5-15 Hz, and different vehicle types exhibit
different frequency characteristics. After applying a low-pass fil-
ter, the vehicle-induced vibration signal exhibits a noticeable
undulation, as seen by the red line on the waveform graph.
This corresponds to quasi-static deformations of the road
surface caused by the vehicle (Chiang et al., 2023; Corera
et al., 2023).

Vibrator vehicle source
During the observation period, a seismic vibrator vehicle was
deployed to carry out active-source signal tests, which also
increased the diversity of signal sources. The ground vibrations
caused by the vibrator vehicle are significantly stronger, and
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Figure 2. DAS records of typical events recorded during our DAS
development. (a—d) Sources of train, car, vibrator vehicle, and
industrial factory, with each figure displaying four panels: a single
channel number (CN) waveform, a time—frequency spectrogram
of the waveform, a multichannel waveform and a space—fre-
guency spectrogram panel from top to bottom. The delay time
label indicates the timestamp of the space—frequency spectrogram
relative to the starting time (0 s). The red line in the first panel of
car represents the quasi-static waveform after low-pass filtering.
(e) The earthquake recorded by the DAS. The earthquake panels
on the left represent the single-channel waveform and spectro-
gram, and the panels on the right represent the multichannel
waveform and space-frequency spectrogram. The arrival times of
P waves and S waves of the earthquake are marked with red and
blue dots, respectively, in the figures. The short-time Fourier
transform (STFT) time windows are set to 2.56 s, with an overlap of
0.9 between adjacent time windows. The color version of this
figure is available only in the electronic edition.

their propagation range is much larger than that of conven-
tional vehicles. From the spectrum analysis in Figure 2c¢, the
vibrations generated by the seismic source vehicle exhibit a
unique feature. The frequency shows a linearly increasing
trend over time, and the signal intensity distribution across
various frequency bands received by DAS channels near the
source location appears relatively uniform.
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Industrial factory source

There is a factory that manufactures refractory materials near
our observation region and we annotated its location with a
blue star in Figure la. The factory operates during the day,
and the acoustic signals generated by the mechanical equip-
ment are recorded by the DAS system. To better illustrate
the wavefield characteristics of the factory source, the wave-
forms and spectrograms are plotted in Figure 2d. This source
has a frequency ranging from ~5 to 30 Hz, with an influence
radius about 600 m. From the space-frequency spectrogram,
high-frequency signals are concentrated near the source loca-
tion, gradually attenuate toward both ends away from the
source. Thus, the signal features in the space-frequency
domain show a triangular shape.

Earthquake source
An earthquake was recorded during the DAS observation, as
detailed in Figure 2e. We employed PhaseNet-DAS (Zhu
et al., 2023) to determine the arrival times of P waves and S
waves for each channel, which are marked on the graph. The
energy of the S wave is stronger than that of the P wave. We
also observed significant amplitude variations across different
locations of the DAS array, which may be attributed to the dif-
ference in the near-surface properties of the region (Aki, 1993).
Assuming a uniform P-wave velocity of 5 km/s (Ma et al., 2023),
we used a 2D grid-search method, ignoring depth information,
to locate the epicenter ~20 km southwest of the DAS array. This
location is indicated by a red star in the inset of Figure 1la.
This analysis of seismic source signals illustrates that different
acoustic events exhibit distinct features in the space-frequency
domain. It is feasible to identify events using wavefield informa-
tion in the time-space-frequency domain. Thus, we propose a
machine learning-based acoustic event detection and classifica-
tion method for urban DAS data, which has good efficiency and
enables long-range and real-time monitoring of urban opera-
tional status and anomaly detection.

Data processing methods

In the data processing section, the multichannel DAS data were
transformed into space-frequency domain spectrograms using
the STFT. Subsequently, a YOLO model was trained to identify
acoustic events within these space-frequency spectrograms.
The dataset employed for training the model was prepared
through the label transfer method (described in the following
Datasets and Label Transfer section).

We first downsampled the raw DAS data to 100 Hz, which can
cover the frequency range of typical acoustic events while main-
taining computational efficiency. Then, to obtain the space-fre-
quency spectrogram, we applied the STFT to compute the time-
frequency representation for the DAS data (Oppenheim, 1999):

oo

X(rw) = Y x(t) w(t - 1) eI, (1)

t=—c0
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in which X(7,w) denotes the spectrogram of a time-series wave-
form x(f), 7, and w are, respectively, time and angular frequency,
w(f) denotes the time window, and j is the imaginary unit. After
processing the DAS data by STFT, the original 2D waveform
(spatiotemporal waveform) was transformed into 3D data, incor-
porating time, space, and frequency, as indicated by the translu-
cent blue cuboid in Figure 3a. Based on this 3D data structure, we
proposed a workflow as shown in Figure 3b. The detailed event
classification process is as follows:

o Step a, we first selected DAS data of any length and con-
verted it into 3D data blocks using STFT. Note that the data
length must exceed the STFT window length. As shown in
the red dashed box on the left side of Figure 3b.

o Step b, we then extracted data from different channels at the
same time to form a space-frequency spectrogram. The
space—frequency spectrogram was then used as an input data
for the neural network model. In this study, the YOLO-v8
detection model (Jocher et al., 2023) was used to detect differ-
ent acoustic events in the space-frequency domain. YOLO-v8
is a version of the YOLO model series known for its speed,
accuracy, and ease of use. This is the first study to apply this
model to object detection and classification using DAS data.
The YOLO-v8 framework simplifies the training process
through high-level encapsulation (Ultralytics, 2024). We do
not need to manually design complex model architectures
and it offers a more efficient training experience. The loss
function of YOLOVS is a combination of complete intersec-
tion over union loss and distribution focal loss (DFL) for
bounding box regression, and binary cross-entropy (BCE) loss
for classification.

« Step ¢, the time slice spectrograms were sequentially fed into
the detector in chronological order. It annotated the positions
of events for each timeframe using bounding boxes and pro-
vide labels for different event types and that is step d.

Through the proposed method, the positions and types of
acoustic events at different time were inferred. Thus, the real-
time multiobject detection using DAS data were achieved.

Datasets and Label Transfer
The label transfer method was proposed for preparing the
training dataset for the YOLO model. In this section, we
selected an 8-min data segment (19 September 2022 18:48-
18:56) as a representative case. First, multichannel waveforms
were visualized to generate a DAS image in the space-time
domain. Manual annotation was performed on the DAS image
to extract spatiotemporal event labels, with 36% of the anno-
tations completed by researchers and the remaining 64% by
subcontracted human workers. By incorporating the frequency
characteristics of distinct events, space-time-frequency anno-
tations were derived for each event and stored as a structured
label list. Subsequently, each channel of the raw DAS data
Number 5
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underwent STFT, expanding
the dataset into the space-
time-frequency domain. Data
slices corresponding to identi-
cal timestamps were extracted
to generate space-frequency
spectrograms. Finally, annota-
tions from the label list were
mapped to the current time-
stamp to assemble the dataset.

The label transfer method
allows us to annotate a single
DAS spatiotemporal image
and then generate many anno-
tated samples in the space—fre-
quency domain. For example,
an 8-min segment of data at
100 Hz, after applying the
STFT with a time window w.,
of 2.56 s (256 sample points)
and a timestep T, of 2.56 s
(256 sample points), produced
187 spectrograms. This method
is briefly described as the series
of blue arrows shown in
Figure 3b. The detailed process
is described subsequently:

o Step 1, as shown in the blue
dashed box on the right side
of Figure 3b. We selected an
8-min length section of data
to create the training dataset
using the label transfer
method. The data length
was adjusted according to
the actual task requirements.
For this study, the reasons for
selecting an 8-min duration
are detailed in the Label
transfer ~data  processing
length section. Then, the
downsampled DAS raw data
were visualized in the spatio-
temporal domain. The 8-min
section of raw data we
resampled at 10 Hz, giving
4800 points in the time
dimension.  Taking into
account the 1580 channels
in the spatial dimension, we
obtained a 2D matrix of
size 1580 x 4800 in the

Seismological Research Letters 3117



spatiotemporal domain that is visualized as an image. The ver-
tical and horizontal axis of this image, respectively, represent
channel number and time.

o Step 2, acoustic events were annotated in this spatiotemporal
image. As shown in Figure 3b, similar to the annotation
method used in semantic segmentation, we label each pixel
in the image to distinguish different categories. We utilized
relevant annotation tools (Wada, 2018) to draw polygons to
annotate different parts of the image, rapidly generating the
corresponding pixel-level labels. During the annotation
process, when encountering overlapping sources, our usual
approach is that the signal source with stronger energy over-
rides the signal source with weaker energy. In addition, we
have manually included annotated spectrograms to improve
the differentiation of overlaping sources. This allows for
multiple labels for signals at the same time and space, help-
ing the model distinguish between different sources at the
same time and location. Please refer to the Handling over-
lapping signal sources section for details.

o Step 3, according to the pixel level labels, the start time ¢,
and the end time t.,y of different acoustic events were
obtained for any given channel, as shown in Figure 3b.
Then these timestamps of the event were recorded in a label
list at the channel level.

o Step 4, we obtained the label information for all channels at
any given time through the label list. However, frequency
information was also required for the identification and
classification task. As the example in Figure 2, the frequency
characteristics of different acoustic events are distinct.
The acoustic sources of train, car, and vibrator vehicle have
very broad-frequency bands, which cover the entire valid
frequency range (around 0-50 Hz). The factory and the earth-
quake have relatively narrow-frequency bands, which are
5-35 Hz and below 40 Hz, respectively. In addition, we con-
ducted a detailed power spectral density (PSD) analysis spe-
cifically for car events, which demonstrated that the frequency
range for each type of event remains relatively stable. For fur-
ther details, please refer to the Power spectral density analysis
of car events section.

o The step 5 was to transfer the labels from the spatiotemporal
domain to the space-frequency domain. As mentioned ear-
lier, the 8 min section data generated 187 spectrogram
images. The central time T; of each image can be calculated
by timestep and time window with equation (2), which is
required for further processing,

T, =T+ Wlen/2 + Tstep X i, (2

in which T represents the start time of the 8-min segment of
DAS data, i means the index of spectrogram image. For the
spectrogram at time T, the horizontal range (space axis) and
the center position of the bounding box were determined
according to the label list. In addition, based on the analysis
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TABLE 1
Number of Labels for Each Class in the Guye Dataset

Vibrator  Industrial
Class Train Car Vehicle Factory Earthquake
Number 428 1688 146 148 76

of the frequency characteristics of different acoustic events
mentioned earlier, the vertical range (frequency axis) and
center position of the bounding box were determined.
Once the position and range of the bounding box are deter-
mined in the spectrogram images, the label transfer work is
completed.

Combined with the object detection and classification
method proposed in this article, it can help researchers effort-
lessly achieve custom object detection and classification tasks
with a large volume of DAS data. In this study, we used a por-
tion of the entire DAS raw data and created a spectrogram
dataset for model training through the label transfer method;
and the labeled dataset is split with 85% used for training and
15% for validation. The number of samples for each class label
is shown in Table 1.

Results and Discussion
The YOLOV8 model was trained on the Guye DAS dataset cre-
ated by the label transfer method. The batch size was set to 16,
and we trained on this dataset for 600 epochs with initial learn-
ing rate 0.01, incorporating an early stopping mechanism
(stopping training early because no improvement was observed
in the last 50 epochs). We trained and tested five different con-
figurations of YOLOvV8 model, including nano (YOLOv8-n),
small (YOLOVS-s), medium (YOLOv8-m), large (YOLOVS-),
and extra-large (YOLOV8-x) size, each with increasing number
of parameters, as shown in Table 2. The proposed model was
trained, validated, and evaluated on a workstation, which has
an Intel i9-13900K central processing unit (CPU) and Nvidia
RTX4090 graphic processing units (GPU).

The configuration and evaluation for each model are shown
in Table 2, with Speedqp; and Speedqpy being tested on the
workstation mentioned earlier. In this table, P represents pre-
cision, R represents recall, and mAPj5 refers to the mean aver-
age precision when the intersection over union threshold is set
at 50%. It evaluates how well the predicted bounding boxes
overlap with the ground-truth boxes, considering a detection
correct if the overlap is at least 50%, and mAP5,_g5 means an
overlap ranging from 50% to 90% of this metric. Figure 4 illus-
trates the overall trend of the performance metrics of the pro-
posed model, including loss, precision, and recall, and the
comprehensive explanation of those metrics can be found in
the official documents (Ultralytics, 2025). The training loss
is slightly greater than the validation loss during training.
Number 5
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Figure 4. Training results of the acoustic event detection and only in the electronic edition.
classification model. The color version of this figure is available
TABLE 2
Performance of the YOLOv8 Model on the Distributed Acoustic Sensing (DAS) Dataset
Model P R mAP5, MAP5g o5 Speedcpy Speedgpy Params GFLOPs
YOLOv8-n 0.984 0.978 0.986 0.876 6.7 ms 4.1 ms 3006623 8.1
YOLOV8-s 0.990 0.983 0.988 0.892 19.4 ms 4.8 ms 11127519 28.4
YOLOV8-m 0.986 0.983 0.987 0.891 54.9 ms 5.5 ms 25842655 75.7
YOLOv8-I 0.986 0.987 0.987 0.900 86.9 ms 6.1 ms 43610463 164.8
YOLOV8-x 0.983 0.985 0.988 0.896 133.6 ms 6.9 ms 68128383 257.4

However, both the training loss and validation loss decrease
steadily throughout the training process, with no signs of over-
fitting. Figure 5 shows the test results of this detection and clas-
sification model.

The earlier results demonstrate that the proposed method
performs well in acoustic source detection and classification
on the DAS dataset. All class detection accuracy of multiple con-
figuration models is above 98%. For the more stringent evalu-
ation metric mAP5;_gs, it can also reach 0.900. The confusion
matrix in Figure 6 illustrates the model recognition results for
the six classes. The model performs excellent recognition results
for trains, earthquakes, industry factory, and vibrator vehicles,
which approaches 100%. The detection rate for the car class
is also very high. However, there are 24 background labels iden-
tified as cars, which may be due to some vehicles being missed
during manual labeling of the DAS data, resulting in the model
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recognizing these targets without corresponding labels. The pro-
posed method exhibits high accuracy in detecting both common
urban human activities, such as traffic sources and uncommon
acoustic sources such as earthquakes or vibrator vehicles. We
also tested this method on the entire DAS dataset; detailed infor-
mation can be found in the Performance on the whole dataset
section. In addition, it is observed that when the model scale is up
to YOLOVS-s or larger, the increase in the number of parameters
has a relatively marginal improvement on the model’s accuracy.
All class mAPs5;_g; of YOLOv8-x are about 0.896, whereas
YOLOV8-1 achieve 0.900. It may be attributed to the fact that
when acoustic waveform data collected by the DAS system
are transformed into the space—frequency domain, the wavefield
features of typical events become more distinct and easier to dif-
ferentiate. Therefore, the detection and classification problem are
relatively simple, requiring no need for large-parameter models
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for feature extraction. This further confirms that the proposed
method has considerable potential to identify a wide range of
acoustic events.

We also performed efficiency tests on both CPU and GPU
platforms. On the GPU platform, the processing time for a sin-
gle space—frequency spectrogram by each model is within the
millisecond range. Therefore, there is no need to consider the
model size, and it is preferable to select the high-accuracy
YOLOV8-1 for DAS data processing. On the CPU platform,
the computation speed decreases significantly with increasing
model size, ranging from 6.7 ms for YOLOv8-n to 133.6 ms for
YOLOV8-x. Therefore, we need to trade-off between model
accuracy and processing speed. We recommended running
YOLOvVS-s on the CPU platform for the classification and
detection of DAS data because it offered excellent accuracy
and an acceptable processing speed.
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Figure 5. The performance of the proposed method for acoustic
event detection and classification in the test dataset. (a) The label
of the DAS datasets created using Guye field data, and (b) the
prediction results of the method. The red boxes indicate trains,
orange boxes indicate cars, yellow boxes indicate vibrator
vehicles, pink boxes indicate earthquakes, and green boxes
indicate industrial factory sources. The digits within the filled
rectangles in panel (b) represent the confidence scores for each
predicted class. Each image represent a single space—frequency
spectrogram for a 2.56 s time window. The color version of this
figure is available only in the electronic edition.

In addition, the performance of the supervised learning
model requires large and diverse data for training and valida-
tion. We used a commercial Al trainer service to achieve original
labels in time-space domain for the six classes we defined,
before applying our label transfer method. Because time and
Volume 96«
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Figure 6. Confusion matrix of predicted results. The color version
of this figure is available only in the electronic edition.

space scales expand in the future, more classes of acoustic events
may be discovered. To address this, we will employ a commer-
cial service to annotate new classes and expand the categories of
our datasets. Our model, which has shown strong generalization
performance across other datasets (see the Model generalization
analysis section) can serve as a pretrained model for transfer
learning, paving the way for future improvements and adapta-
tions to an evergrowing range of acoustic events.

Conclusions
We have proposed a long-range and high-accuracy object detec-
tion and classification method, which takes advantage of DAS
acquisitions and advanced deep learning model YOLOVS. This
method can be widely applied to routine human activity mon-
itoring, including monitoring of traffic and industrial produc-
tion, and also detection of hazardous events in smart cities,
such as earthquakes. It provides a new approach for modern
smart urban sensing. The proposed method utilizes the charac-
teristics of acoustic events in the space-frequency domain,
greatly improving the accuracy and efficiency of identifying
acoustic signals. The identification accuracy of all classes can
be up to 99%, and the more stringent evaluation metric
mAPs)_o5 also can be up to 0.900. The method also exhibits
excellent operational efficiency. When running on a GPU plat-
form, the processing speed per frame is in the millisecond range,
which is totally capable of meeting the requirements of routine
real-time monitoring. In addition, the proposed label transfer
method can be easily utilized by relevant researchers to enrich
detection categories or applied to specific datasets. The proposed
smart city monitoring method has potential applications in
urban environmental perception and hazard information
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analysis and can be used to improve the safety and sustainability
of urban environments.

Data and Resources

The code will be available at https://github.com/ZHONG-YICHEN/
DAS_ML.git. The distributed acoustic sensing (DAS) data used in this
study can be obtained from the corresponding author on a reasonable
request. To evaluate the generalization ability of the model proposed
in this study, we conducted tests on multiple datasets, including the
foresee dataset published on PubDAS (Spica et al., 2023) and the
Southern California Earthquake Data Center (SCEDC) earthquake
data AWS Public dataset (Southern California Earthquake Data
Center [SCEDC], 2013) (https://scedc.caltech.edu/data/getstarted-
pds.html) (Zhu et al, 2023). All websites were last accessed in
May 2024.
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Appendix

Label transfer data processing length

The duration of the data is related to the cost of data annotation.
At the same downsampling rate (e.g., downsampled to 10 Hz),
visualizing and manually annotating a 4-min data sample (as
shown in Fig. Al) results in 93 training samples obtained
through label transfer (with a timestep of 2.56 s). In comparison,
an 8-min data sample can produce 187 training samples with a
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2 min

4 min

6 min

similar level of manual annotation cost. However, the data dura-
tion cannot be increased indefinitely because this would make
the visualized images excessively long and significantly increase
the difficulty of annotation. For instance, an 8-min data sample
downsampled to 10 Hz yields 4800 points. Considering our data
has 1580 channels, the resulting image size for manual annota-
tion is 4800 x 1580, as shown in Figure A1, in which the width is
three times the height. This dataset is characterized by frequent
traffic signals, with most annotations being polygons represent-
ing vehicle trajectories, so wider images are easier to annotate.
By visualizing data samples of different lengths, we found that
this image size balances ease of manual annotation with maxi-
mizing sample conversion rate (i.e., one spatiotemporal sample
can be converted into 187 space-frequency domain samples
through label transfer). Therefore, an 8-min duration was
chosen for spatiotemporal visualization and annotation of this
dataset.
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46 samples

93 samples

140 samples

187 samples

Figure A1. A comparison chart of different data lengths in label
transfer. The color version of this figure is available only in the
electronic edition.

Handling overlapping signal sources

When labeling the data using the label transfer method, we
sometimes encounter situations where two signal sources over-
lap. Object overlap is a common challenge in computer vision
tasks. In such cases, we will take the following measures to
address it. First, we aim to avoid overlap during the selection
of training data for annotation. During the annotation process,
when encountering overlapping points, our usual approach is
that the signal source with stronger energy will override the
signal source with weaker energy. As shown in Figure A2,
which provides a time-space visualization of a section of
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distributed acoustic sensing (DAS) data, the vehicle trace,
highlighted by the dashed line, overlaps with a train trace.
To further analyze this, we extracted data from two specific
timeframes and generated their corresponding space-fre-
quency spectrograms, with frame 1 and frame 2 displayed
in Figure A3ab. As illustrated in Figure A3, the vibration
energy generated by the train is significantly greater than
that of the car. Consequently, at the point where the train
and car signals overlap, it becomes challenging to manually
distinguish the vehicle signals from the stronger train signals.
When the train signal and car signal overlap, we typically label
the overlapping part as the train in the time-space domain. As
shown in Figure A4, the red (train) label covers the yellow
(car) label.

On the other hand, to enhance data diversity, we also
manually labeled some overlapping samples, especially when
the energy levels of the two signal sources are not signifi-
cantly different. As shown in Figure A5, the train and seismic
signal sources have overlapping parts on the spectrogram.
We labeled each object on the spectrogram separately
for model training, which enhances the model’s generaliza-
tion ability. This enhances the model’s ability to recognize
overlapping acoustic sources. As shown in Figure A6, the
signal strengths of factory and vehicle sources are compa-
rable, and the model can differentiate between the two over-
lapping source signals. However, in cases where the signals
from trains and cars overlap, as illustrated in Figure A3, the
signal strength of the train is much greater than that of
the car, making it difficult for humans to distinguish the
car source covered by the train, and the model performs
poorly.

3124 Seismological Research Letters

Downloaded from http://pubs.geoscienceworld.org/ssal/srl/article-pdf/96/5/3112/7172549/srl-2024222.1.pdf
bv lniversitv of Washinaton aorieto

www.srl-online.org

Time (min)

Figure A2. Visualizing the overlapping data between train and
car. The dashed line highlights a trace of a car. Transform the
frame 1 and frame 2 data into the space-frequency domain,
resulting in Figure A3a,b, respectively. The color version of this
figure is available only in the electronic edition.

Power spectral density analysis of car events

The frequency range for each type of source was not deter-
mined arbitrarily but was assigned based on an analysis of
the source’s spectrum. Taking vehicle events as an example,
as shown in the figures, we randomly selected 12 vehicle
source DAS data sets for analysis and plotted the correspond-
ing power spectral density (PSD) diagrams, as shown in
Figure A7. We also plotted comparative diagrams of the
PSD for these vehicle data, as shown in Figure A8. The car
induced vibration components above 50 Hz can be disre-
garded. On the other hand, the ground vibrations from
vehicles are indeed influenced by many factors. As illustrated
in Figure A7, waveform recordings of different vehicle signals
vary. However, the comparative PSD diagrams of vehicle sig-
nals show that the vibration frequency range produced by
almost all conventional vehicles is primarily concentrated
between 5 and 40 Hz, which allows for the determination
of the frequency range of the space-frequency box. To cap-
ture more detailed frequency characteristics, the frequency
observation range for vehicle signals in this study is set to
0-50 Hz. The main goal of this article is to propose a clas-
sification method for acoustic signal detection based on urban
DAS data. Of course, vehicle-induced ground vibrations
influenced by factors such as different speeds and weather
Volume 96«
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conditions will be analyzed in more detail in our subsequent
studies.

Performance on the whole dataset

After testing the proposed method on the entire DAS dataset,
we found that it generally performs well in identifying various
targets such as trains, cars, and factory production through the
entire dataset. In Figure A9, we present several randomly
selected spectrogram frames with the predictions to demon-
strate the model’s performance. However, there are some
instances where targets are missed, as shown in the image
in the lower-right corner. The signal on the right should be
the excitation generated by the source vehicle, but the model’s
prediction missed this target. This issue may be due to the
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Figure A3. Visualization of overlapping train and car signals in
the space—frequency domain. (a) Train signals override car
signals. (b) Train signals are separated from the car signals. The
color version of this figure is available only in the electronic
edition.

insufficient number of source vehicle instances in the training
dataset. Future improvements could be achieved by expanding
the training dataset.

In addition, we input the entire dataset into the model
sequentially according to the time series, and arranged
the predicted spectrogram results frame by frame in

Seismological Research Letters 3125
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Figure A4. In the manually labeled examples in the spatiotem-
poral domain, when overlapping categories are encountered, we
assume that the signal with stronger energy will override the

4
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signal with weaker energy. The color version of this figure is
available only in the electronic edition.
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Figure A5. Manual labeling of overlapping tags. Earthquake and
train signals are not significantly different, so manually adding

overlapping tag samples can be beneficial. The color version of
this figure is available only in the electronic edition.

chronological order, converting them into time-space-
domain prediction results, as shown in Figure A10. The
time-space domain result can help us more comprehensively
understand the model’s performance in the whole dataset. As
shown in Figure A10, the x-axis represents time, and the y-
axis represents the number of channels. We use red lines to

3126 Seismological Research Letters

Downloaded from http://pubs.geoscienceworld.org/ssal/srl/article-pdf/96/5/3112/7172549/srl-2024222.1.pdf
bv lniversitv of Washinaton aorieto

www.srl-online.org

denote predictions for trains, black lines for cars, green lines
for factories, orange lines for vibrator vehicles, and blue lines
for earthquake events. It can be seen that our model performs
exceptionally well across the entire dataset, with clear vehicle
trajectories and accurate prediction of earthquake occur-
rences. We also did compare the train recognition results with
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the published passenger train schedules. We found that, in
addition to the published train numbers, the recognition
results also included some operational trajectories that have
not yet been publicly disclosed. These undisclosed trajectories
are likely freight train operations because this railway line is
one of the main routes for coal transportation from
Tangshan, and it should include both regular passenger trains
and freight trains. A detailed analysis of the regional traffic
recognition results will be conducted in the next phase of
our research.
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Figure A6. Prediction results for overlap acoustic sources. (a) The
industrial factory (green label) and car (orange label) signals have
some overlap. (b) The train (red label) and earthquake (pink label)
signals have some overlap. The color version of this figure is
available only in the electronic edition.

Model generalization analysis
To evaluate the generalization ability of the model proposed in
this study, we conducted tests on multiple datasets, including

Seismological Research Letters 3127
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the foresee dataset published on PubDAS (Spica et al., 2023)
and the Southern California Earthquake Data Center (SCEDC)
earthquake data AWS Public dataset (SCEDC, 2013) (see Data
and Resources) (Zhu et al., 2023). We detected two types of
acoustic events: vehicle and seismic events. Specifically, the
FORESEE dataset contains acoustic events for both vehicle
and earthquake, whereas the SCEDC dataset focuses on earth-
quake event detection. The results is shown as follows:
Figure A1l showing the detection results for vehicle events,
and Figure A12 for earthquake events. For the vehicle detec-
tion, as shown in Figure A11, our model was still able to effec-
tively identify the targets. It can be observed that the model
accurately locates and identifies vehicles. This robustness
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Figure A7. DAS recordings 12 cars and their corresponding power
spectral density. The color version of this figure is available only in
the electronic edition.

ensures that the model can adapt to and perform well on a
variety of data, indicating its versatility and potential for broad
application in diverse scenarios.

Figure Al2a presents the detection result for a microseis-
mic event (M 1.1) in the FORESEE dataset (Zhu et al., 2021).
Despite the small magnitude of this event, our model suc-
cessfully identified it as “earthquake” class and the associated
Number 5
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Figure A8. Comparison of power spectral density across multiple
cars recordings. The color version of this figure is available only in
the electronic edition.
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Figure A9. Randomly selected spectrogram frames with predictions
from the dataset. Each subplot showcases predictions of different
events within the dataset. The color coding for event types is
consistent with the main text: red indicates trains, orange indicates
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confidence scores of 0.96, marked as “Earthquake 0.96” in
Figure Al2a, highlighting the method’s sensitivity and reli-
ability in detecting low-magnitude microearthquakes. In the
SCEDC earthquake dta AWS public dataset, as shown in
Figure A12b, our method achieved significantly high confi-
dence scores of 0.97 for an earthquake event in that dataset,
demonstrating excellent detection performance. This further
validates the model’s robustness across earthquake events
with varying frequency and apparent velocity characteristics.

The experimental results further confirm our model’s
effectiveness and generalization ability in detecting various
acoustic events. However, it is important to note that if
our model is used as a pretrained model and subsequently
fine-tuned on a specific dataset, better results could be
achieved. Fine-tuning the model on domain-specific data
would allow it to better adapt to the unique characteristics
of that dataset, potentially leading to improved performance.
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cars, yellow indicates vibrator vehicles, pink represents earthquakes,
and green denotes industrial factory signals. The x-axis represents
the channel, and the y-axis represents the frequency (Hertz). The
color version of this figure is available only in the electronic edition.
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vibrator vehicles, and blue for earthquake events. This
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Figure A11. Detection of vehicle events in the FORESEE DAS The x-axis represents the channel, and the y-axis represents the
dataset. For each subplot, the orange unfilled rectangular boxes frequency (Hertz). The color version of this figure is available only
highlight the detected signals corresponding to vehicle events. in the electronic edition.
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Figure A12. Earthquake detection results using DAS data from
the FORESEE and Southern California Earthquake Data Center
(SCEDC) datasets. The x-axis represents the DAS channel num-
ber, and the y-axis indicates the frequency range in Hertz. The
pink unfilled rectangular boxes highlight the signals corre-
sponding to the detected earthquake events. The labels

Volume 96 « Number 5 =«

Downloaded from http://pubs.geoscienceworld.org/ssal/srl/article-pdf/96/5/3112/7172549/srl-2024222.1.pdf
bv lniversitv of Washinaton aorieto

September 2025 « www.srl-online.org

900

Channel

"Earthquake 0.96" and “Earthquake 0.97" within the filled pink
boxes denote the detected earthquake class and the associated
confidence scores. (a) Detection results for a single earthquake
event from the FORESEE dataset. (b) Detection results for a single
earthquake event from the SCEDC dataset. The color version of
this figure is available only in the electronic edition.
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